Python装饰器的应用场景
前面章节已经讲解了装饰器的基本概念及用法,本节将结合实际工作中的几个例子,带读者加深对它的理解。
再比如一些网站,你不登录也可以浏览内容,但如果你想要发布文章或留言,在点击发布时,服务器端便会查询你是否登录。如果没有登录,就不允许这项操作等等。
如下是一个实现身份认证的简单示例:
上面这段代码中,定义了装饰器 authenticate,函数 post_comment() 则表示发表用户对某篇文章的评论,每次调用这个函数前,都会先检查用户是否处于登录状态,如果是登录状态,则允许这项操作;如果没有登录,则不允许。
我们通常用下面的方法来表示:
它的写法往往是下面的格式:
试想一下,如果没有输入的合理性检查,很容易出现“模型训练了好几个小时后,系统却报错说输入的一个参数不对,成果付之一炬”的现象。这样的“惨案”,大大减缓了开发效率,也对机器资源造成了巨大浪费。
LRU cache,在 Python 中的表示形式是 @lru_cache。@lru_cache 会缓存进程中的函数参数和结果,当缓存满了以后,会删除最近最久未使用的数据。
正确使用缓存装饰器,往往能极大地提高程序运行效率。举个例子,大型公司服务器端的代码中往往存在很多关于设备的检查,比如使用的设备是安卓还是 iPhone,版本号是多少。这其中的一个原因,就是一些新的功能,往往只在某些特定的手机系统或版本上才有(比如 Android v200+)。
这样一来,我们通常使用缓存装饰器来包裹这些检查函数,避免其被反复调用,进而提高程序运行效率,比如写成下面这样:
装饰器用于身份认证
首先是最常见的身份认证的应用。这个很容易理解,举个最常见的例子,大家登录微信,需要输入用户名密码,然后点击确认,这样服务器端便会查询你的用户名是否存在、是否和密码匹配等等。如果认证通过,就可以顺利登录;反之,则提示你登录失败。再比如一些网站,你不登录也可以浏览内容,但如果你想要发布文章或留言,在点击发布时,服务器端便会查询你是否登录。如果没有登录,就不允许这项操作等等。
如下是一个实现身份认证的简单示例:
import functools def authenticate(func): @functools.wraps(func) def wrapper(*args, **kwargs): request = args[0] # 如果用户处于登录状态 if check_user_logged_in(request): # 执行函数 post_comment() return func(*args, **kwargs) else: raise Exception('Authentication failed') return wrapper @authenticate def post_comment(request, ...) ...注意,对于函数来说,它也有自己的一些属性,例如 __name__ 属性,代码中 @functools.wraps(func) 也是一个装饰器,如果不使用它,则 post_comment.__name__ 的值为 wrapper。而使用它之后,则 post_comment.__name__ 的值依然为 post_comment。
上面这段代码中,定义了装饰器 authenticate,函数 post_comment() 则表示发表用户对某篇文章的评论,每次调用这个函数前,都会先检查用户是否处于登录状态,如果是登录状态,则允许这项操作;如果没有登录,则不允许。
装饰器用于日志记录
日志记录同样是很常见的一个案例。在实际工作中,如果你怀疑某些函数的耗时过长,导致整个系统的延迟增加,想在线上测试某些函数的执行时间,那么,装饰器就是一种很常用的手段。我们通常用下面的方法来表示:
import time import functools def log_execution_time(func): @functools.wraps(func) def wrapper(*args, **kwargs): start = time.perf_counter() res = func(*args, **kwargs) end = time.perf_counter() print('{} took {} ms'.format(func.__name__, (end - start) * 1000)) return res return wrapper @log_execution_time def calculate_similarity(items): ...这里,装饰器 log_execution_time 记录某个函数的运行时间,并返回其执行结果。如果你想计算任何函数的执行时间,在这个函数上方加上@log_execution_time即可。
装饰器用于输入合理性检查
在大型公司的机器学习框架中,调用机器集群进行模型训练前,往往会用装饰器对其输入(往往是很长的 json 文件)进行合理性检查。这样就可以大大避免输入不正确对机器造成的巨大开销。它的写法往往是下面的格式:
import functools def validation_check(input): @functools.wraps(func) def wrapper(*args, **kwargs): ... # 检查输入是否合法 @validation_check def neural_network_training(param1, param2, ...): ...其实在工作中,很多情况下都会出现输入不合理的现象。因为我们调用的训练模型往往很复杂,输入的文件有成千上万行,很多时候确实也很难发现。
试想一下,如果没有输入的合理性检查,很容易出现“模型训练了好几个小时后,系统却报错说输入的一个参数不对,成果付之一炬”的现象。这样的“惨案”,大大减缓了开发效率,也对机器资源造成了巨大浪费。
缓存装饰器
关于缓存装饰器的用法,其实十分常见,这里以 Python 内置的 LRU cache 为例来说明。LRU cache,在 Python 中的表示形式是 @lru_cache。@lru_cache 会缓存进程中的函数参数和结果,当缓存满了以后,会删除最近最久未使用的数据。
正确使用缓存装饰器,往往能极大地提高程序运行效率。举个例子,大型公司服务器端的代码中往往存在很多关于设备的检查,比如使用的设备是安卓还是 iPhone,版本号是多少。这其中的一个原因,就是一些新的功能,往往只在某些特定的手机系统或版本上才有(比如 Android v200+)。
这样一来,我们通常使用缓存装饰器来包裹这些检查函数,避免其被反复调用,进而提高程序运行效率,比如写成下面这样:
@lru_cache def check(param1, param2, ...) # 检查用户设备类型,版本号等等 ...
所有教程
- socket
- Python基础教程
- C#教程
- MySQL函数
- MySQL
- C语言入门
- C语言专题
- C语言编译器
- C语言编程实例
- GCC编译器
- 数据结构
- C语言项目案例
- C++教程
- OpenCV
- Qt教程
- Unity 3D教程
- UE4
- STL
- Redis
- Android教程
- JavaScript
- PHP
- Mybatis
- Spring Cloud
- Maven
- vi命令
- Spring Boot
- Spring MVC
- Hibernate
- Linux
- Linux命令
- Shell脚本
- Java教程
- 设计模式
- Spring
- Servlet
- Struts2
- Java Swing
- JSP教程
- CSS教程
- TensorFlow
- 区块链
- Go语言教程
- Docker
- 编程笔记
- 资源下载
- 关于我们
- 汇编语言
- 大数据
- 云计算
- VIP视频