C语言爱因斯坦的数学题
问题描述
爱因斯坦出了一道这样的数学题:有一条长阶梯,若每步跨2阶,则最后剩1阶,若每步跨3阶,则最后剩2阶,若每步跨5阶,则最后剩4阶,若每步跨6阶则最后剩5阶。只有每次跨7阶,最后才正好一阶不剩。请问在 1~N 内,有多少个数能满足?问题分析
用变量x表示阶梯数,则x 应满足:◎若每步跨2阶,则最后剩1阶 -- x%2=1;
◎若每步跨3阶,则最后剩2阶 -- x%3=2;
◎若每步跨5阶,则最后剩4阶 -- x%5=4;
◎若每步跨6阶,则最后剩5阶 -- x%6=5;
◎每次跨7阶,最后一阶不剩 -- x%7=0。
因此,阶梯数应该同时满足上面的所有条件。
算法设计
该问题要求输入N值,求解出在的范围内存在多少个满足要求的阶梯数。在算法设计中,使用while循环以允许重复读入多个N值。声明一个变量假设为flag,利用语句 while(flag){循环体} 来进行控制,当flag的值为1时可以接着输入,若为0则结束循环。对每一次读入的N值,都要判断在 1~N 的范围内存在的满足要求的阶梯数个数。判断时可采用for循环,循环变量设为i,由题意,i的初值从7开始取即可,for循环的循环条件为 i<N。for语句的循环体中使用问题分析中列出的5个条件来检验每一个i值,能够满足所有5个条件的i值即为所求的阶梯数。
下面是完整的代码:
#include<stdio.h> int main() { long n, sum, i; int flag=1; while(flag) { printf("输入N:"); scanf("%ld", &n); printf("在1-%ld之间的阶梯数为:\n", n); sum=0; for( i=7; i<=n; i++ ) if( i%7 == 0 ) if( i%6 == 5 ) if( i%5 == 4 ) if( i%3 == 2 ) { sum++; printf("%ld\n", i); } printf("在1-%ld之间,有%ld个数可以满足爱因斯坦对阶梯的要求。\n", n, sum); printf("继续请输入1,否则输入0:\n"); scanf("%d", &flag); } return 0; }运行结果:
输入N:123
在1-123之间的阶梯数为:
119
在1-123之间,有1个数可以满足爱因斯坦对阶梯的要求。
继续请输入1,否则输入0:
1
输入N:1234
在1-1234之间的阶梯数为:
119
329
539
749
959
1169
在1-1234之间,有6个数可以满足爱因斯坦对阶梯的要求。
继续请输入1,否则输入0: