Service Container
Introduction
The Laravel service container is a powerful tool for managing class dependencies and performing dependency injection. Dependency injection is a fancy phrase that essentially means this: class dependencies are "injected" into the class via the constructor or, in some cases, "setter" methods.
Let's look at a simple example:
<?php
namespace App\Jobs;
use App\User;
use Illuminate\Contracts\Mail\Mailer;
use Illuminate\Contracts\Bus\SelfHandling;
class PurchasePodcast implements SelfHandling
{
/**
* The mailer implementation.
*/
protected $mailer;
/**
* Create a new instance.
*
* @param Mailer $mailer
* @return void
*/
public function __construct(Mailer $mailer)
{
$this->mailer = $mailer;
}
/**
* Purchase a podcast.
*
* @return void
*/
public function handle()
{
//
}
}
In this example, the PurchasePodcast
job needs to send e-mails when a podcast is purchased. So, we will inject a service that is able to send e-mails. Since the service is injected, we are able to easily swap
it out with another implementation. We are also able to easily "mock", or create a dummy implementation of the mailer when testing our application.
A deep understanding of the Laravel service container is essential to building a powerful, large application, as well as for contributing to the Laravel core itself.
Binding
Almost all of your service container bindings will be registered within service providers, so all of these examples will demonstrate using the container in that context. However, there is no need to bind classes into the container if they do not depend on any interfaces. The container does not need to be instructed on how to build these objects, since it can automatically resolve such "concrete" objects using PHP's reflection services.
Within a service provider, you always have access to the container via the $this->app
instance variable. We can register a binding using the bind
method, passing the class or interface name that we wish to register
along with a Closure
that returns an instance of the class:
$this->app->bind('HelpSpot\API', function ($app) {
return new HelpSpot\API($app['HttpClient']);
});
Notice that we receive the container itself as an argument to the resolver. We can then use the container to resolve sub-dependencies of the object we are building.
Binding A Singleton
The singleton
method binds a class or interface into the container that should only be resolved one time, and then that same instance will be returned on subsequent calls into the container:
$this->app->singleton('FooBar', function ($app) {
return new FooBar($app['SomethingElse']);
});
Binding Instances
You may also bind an existing object instance into the container using the instance
method. The given instance will always be returned on subsequent calls into the container:
$fooBar = new FooBar(new SomethingElse);
$this->app->instance('FooBar', $fooBar);
Binding Interfaces To Implementations
A very powerful feature of the service container is its ability to bind an interface to a given implementation. For example, let's assume we have an EventPusher
interface and a RedisEventPusher
implementation. Once
we have coded our RedisEventPusher
implementation of this interface, we can register it with the service container like so:
$this->app->bind('App\Contracts\EventPusher', 'App\Services\RedisEventPusher');
This tells the container that it should inject the RedisEventPusher
when a class needs an implementation of EventPusher
. Now we can type-hint the EventPusher
interface in a constructor, or any other location
where dependencies are injected by the service container:
use App\Contracts\EventPusher;
/**
* Create a new class instance.
*
* @param EventPusher $pusher
* @return void
*/
public function __construct(EventPusher $pusher)
{
$this->pusher = $pusher;
}
Contextual Binding
Sometimes you may have two classes that utilize the same interface, but you wish to inject different implementations into each class. For example, when our system receives a new Order, we may want to send an event via PubNub rather than Pusher. Laravel provides a simple, fluent interface for defining this behavior:
$this->app->when('App\Handlers\Commands\CreateOrderHandler')
->needs('App\Contracts\EventPusher')
->give('App\Services\PubNubEventPusher');
You may even pass a Closure to the give
method:
$this->app->when('App\Handlers\Commands\CreateOrderHandler')
->needs('App\Contracts\EventPusher')
->give(function () {
// Resolve dependency...
});
Tagging
Occasionally, you may need to resolve all of a certain "category" of binding. For example, perhaps you are building a report aggregator that receives an array of many different Report
interface implementations. After
registering the Report
implementations, you can assign them a tag using the tag
method:
$this->app->bind('SpeedReport', function () {
//
});
$this->app->bind('MemoryReport', function () {
//
});
$this->app->tag(['SpeedReport', 'MemoryReport'], 'reports');
Once the services have been tagged, you may easily resolve them all via the tagged
method:
$this->app->bind('ReportAggregator', function ($app) {
return new ReportAggregator($app->tagged('reports'));
});
Resolving
There are several ways to resolve something out of the container. First, you may use the make
method, which accepts the name of the class or interface you wish to resolve:
$fooBar = $this->app->make('FooBar');
Secondly, you may access the container like an array, since it implements PHP's ArrayAccess
interface:
$fooBar = $this->app['FooBar'];
Lastly, but most importantly, you may simply "type-hint" the dependency in the constructor of a class that is resolved by the container, including controllers, event listeners, queue jobs, middleware, and more. In practice, this is how most of your objects are resolved by the container.
The container will automatically inject dependencies for the classes it resolves. For example, you may type-hint a repository defined by your application in a controller's constructor. The repository will automatically be resolved and injected into the class:
<?php
namespace App\Http\Controllers;
use Illuminate\Routing\Controller;
use App\Users\Repository as UserRepository;
class UserController extends Controller
{
/**
* The user repository instance.
*/
protected $users;
/**
* Create a new controller instance.
*
* @param UserRepository $users
* @return void
*/
public function __construct(UserRepository $users)
{
$this->users = $users;
}
/**
* Show the user with the given ID.
*
* @param int $id
* @return Response
*/
public function show($id)
{
//
}
}
Container Events
The service container fires an event each time it resolves an object. You may listen to this event using the resolving
method:
$this->app->resolving(function ($object, $app) {
// Called when container resolves object of any type...
});
$this->app->resolving(FooBar::class, function (FooBar $fooBar, $app) {
// Called when container resolves objects of type "FooBar"...
});
As you can see, the object being resolved will be passed to the callback, allowing you to set any additional properties on the object before it is given to its consumer.