首页 > 数据结构 > 排序算法 阅读:358

表插入排序算法

前面章节中所介绍到的三种插入排序算法,其基本结构都采用数组的形式进行存储,因而无法避免排序过程中产生的数据移动的问题。如果想要从根本上解决只能改变数据的存储结构,改用链表存储。

表插入排序即使用链表的存储结构对数据进行插入排序。在对记录按照其关键字进行排序的过程中,不需要移动记录的存储位置,只需要更改结点间指针的指向。

链表的存储结构用代码表示为:
#define SIZE 100
typedef struct {
    int rc;//记录项
    int next;//指针项,由于在数组中,所以只需要记录下一个结点所在数组位置的下标即可。
}SLNode;
typedef struct {
    SLNode r[SIZE];//存储记录的链表
    int length;//记录当前链表长度
}SLinkListType;
在使用数组结构表示的链表中,设定数组下标为 0 的结点作为链表的表头结点,并令其关键字取最大整数。则表插入排序的具体实现过程是:首先将链表中数组下标为 1 的结点和表头结点构成一个循环链表,然后将后序的所有结点按照其存储的关键字的大小,依次插入到循环链表中。

例如,将无序表{49,38,76,13,27}用表插入排序的方式进行排序,其过程为:
  • 首先使存储 49 的结点与表头结点构成一个初始的循环链表,完成对链表的初始化,如下表所示:


     
  • 然后将以 38 为关键字的记录插入到循环链表中(只需要更改其链表的 next 指针即可),插入后的链表为:


     
  • 再将以 76 为关键字的结点插入到循环链表中,插入后的链表为:


     
  • 再将以 13 为关键字的结点插入到循环链表中,插入后的链表为:


     
  • 最后将以 27 为关键字的结点插入到循环链表中,插入后的链表为:


     
  • 最终形成的循环链表为:


     
从表插入排序的实现过程上分析,与直接插入排序相比只是避免了移动记录的过程(修改各记录结点中的指针域即可),而插入过程中同其它关键字的比较次数并没有改变,所以表插入排序算法的时间复杂度仍是O(n2)

对链表进行再加工

在表插入排序算法求得的有序表是用链表表示的,也就注定其只能进行顺序查找。而如果想用折半查找的算法,就需要对链表进行再加工,即对链表中的记录进行重新排列,具体做法为:遍历链表,将链表中第 i 个结点移动至数组的第 i 个下标位置中


 
例如,上表是已经构建好的链表,对其进行再加工的过程为:

  • 首先,通过其表头结点得知记录中关键字最小的是数组下标为 4 的关键字 13,而 13 应该放在数组下标为 1 的位置,所以需要同下标为 1 中存放的关键字进行调换。但是为了后期能够找到 49,将 13 的 next 域指向 49 所在的位置(改变之前需要保存原来的值,这里用 q 指针表示),如下表所示:


     
  • 然后通过 q 指针找到原本 13 指向的下一位关键字 27,同时 q 指针指向下标为 2 的关键字 38,由于 27 应该移至下标为 2 的位置,所以同关键字 38 交换,同时改变关键字 27 的 next 域,如下表所示:


     
  • 之后再通过 q 指针找到下一位关键字时,发现所指位置为下标 2,而之前已经经过了 2 次 移动,所以可以判定此时数组中存放的已经不是要找的,所以需要通过下标为 2 中的 next 域继续寻找,找到下标为 5 的位置,即关键字 38,由于下标 5 远远大于 2,可以判断 38 即为要找的值,所以同下标为 3 的记录交换位置,还要更改其 next 域,同时将 q 指针指向下标为 1 的位置,如下表所示:


     
  • 然后通过 q 指针找到下一位关键字,由于其指向位置的下标 1 中的记录已经发生移动,所以通过 next 域找到关键字 49,发现它的位置不用改变;同样,当通过关键字 49 的 next 域找到下标为 3 的位置,还是需要通过其 next 域找到关键字 76 ,它的位置也不用改变。

重新排列的具体代码实现为:
#include <stdio.h>
#include <stdlib.h>
#define SIZE 6
typedef struct {
    int rc;//记录项
    int next;//指针项,由于在数组中,所以只需要记录下一个结点所在数组位置的下标即可。
}SLNode;
typedef struct {
    SLNode r[SIZE];//存储记录的链表
    int length;//记录当前链表长度
}SLinkListType;
//重新排列函数
void Arrange(SLinkListType *SL){
    //令 p 指向当前要排列的记录
    int p=SL->r[0].next;
    for (int i=1; i<SL->length; i++) {
        //如果条件成立,证明原来的数据已经移动,需要通过不断找 next 域,找到其真正的位置
        while (p<i) {
            p=SL->r[p].next;
        }
        //找到之后,令 q 指针指向其链表的下一个记录所在的位置
        int q=SL->r[p].next;
        //条件成立,证明需要同下标为 i 的记录进行位置交换
        if (p!=i) {
            SLNode t;
            t=SL->r[p];
            SL->r[p]=SL->r[i];
            SL->r[i]=t;
            //交换完成后,该变 next 的值,便于后期遍历
            SL->r[i].next=p;
        }
        //最后令 p 指向下一条记录
        p=q;
    }
}

int main(int argc, const char * argv[]) {

    SLinkListType *SL=(SLinkListType*)malloc(sizeof(SLinkListType));
    SL->length=6;
    SL->r[0].rc=0;
    SL->r[0].next=4;
   
    SL->r[1].rc=49;
    SL->r[1].next=3;
   
    SL->r[2].rc=38;
    SL->r[2].next=1;
   
    SL->r[3].rc=76;
    SL->r[3].next=0;
   
    SL->r[4].rc=13;
    SL->r[4].next=5;
   
    SL->r[5].rc=27;
    SL->r[5].next=2;
   
    Arrange(SL);
    for (int i=1; i<6; i++) {
        printf("%d ",SL->r[i].rc);
    }
    return 0;
}
运行结果为:
13 27 38 49 76