File system sharing (osxfs)
Estimated reading time: 14 minutesosxfs
is a new shared file system solution, exclusive to Docker for Mac.
osxfs
provides a close-to-native user experience for bind mounting macOS file
system trees into Docker containers. To this end, osxfs
features a number of
unique capabilities as well as differences from a classical Linux file system.
Case sensitivity
With Docker for Mac, file systems are shared from macOS into containers in the same way as they operate in macOS. As a result, if a file system on macOS is case-insensitive that behavior is shared by any bind mount from macOS into a container. The default macOS file system is HFS+ and, during installation, it is installed as case-insensitive by default. To get case-sensitive behavior from your bind mounts, you must either create and format a ramdisk or external volume as HFS+ with case-sensitivity or reformat your OS root partition with HFS+ with case-sensitivity. We do not recommend reformatting your root partition as some Mac software dubiously relies on case-insensitivity to function.
Access control
osxfs
, and therefore Docker, can access only those file system resources that
the Docker for Mac user has access to. osxfs
does not run as root
. If the macOS
user is an administrator, osxfs
inherits those administrator privileges. We
are still evaluating which privileges to drop in the file system process to
balance security and ease-of-use. osxfs
performs no additional permissions
checks and enforces no extra access control on accesses made through it. All
processes in containers can access the same objects in the same way as the
Docker user who started the containers.
Namespaces
Much of the macOS file system that is accessible to the user is also available to
containers using the -v
bind mount syntax. The following command runs a container
from an image called r-base
and shares the macOS user’s ~/Desktop/
directory as
/Desktop
in the container.
$ docker run -it -v ~/Desktop:/Desktop r-base bash
The user’s ~/Desktop/
directory is now visible in the container as a directory
under /
.
root@2h30fa0c600e:/# ls
Desktop boot etc lib lib64 media opt root sbin sys usr
bin dev home lib32 libx32 mnt proc run srv tmp var
By default, you can share files in /Users/
, /Volumes/
, /private/
, and
/tmp
directly. To add or remove directory trees that are exported to Docker,
use the File sharing tab in Docker preferences -> Preferences ->
File sharing. (See Preferences.)
All other paths
used in -v
bind mounts are sourced from the Moby Linux VM running the Docker
containers, so arguments such as -v /var/run/docker.sock:/var/run/docker.sock
should work as expected. If a macOS path is not shared and does not exist in the
VM, an attempt to bind mount it will fail rather than create it in the VM. Paths
that already exist in the VM and contain files are reserved by Docker and cannot
be exported from macOS.
Please see Performance tuning for volume mounts (shared filesystems) to learn about new configuration options available with the Docker 17.04 CE Edge release.
Ownership
Initially, any containerized process that requests ownership metadata of
an object is told that its uid
and gid
own the object. When any
containerized process changes the ownership of a shared file system
object, e.g. with chown
, the new ownership information is persisted in
the com.docker.owner
extended attribute of the object. Subsequent
requests for ownership metadata will return the previously set
values. Ownership-based permissions are only enforced at the macOS file
system level with all accessing processes behaving as the user running
Docker. If the user does not have permission to read extended attributes
on an object (such as when that object’s permissions are 0000
), osxfs
will attempt to add an access control list (ACL) entry that allows
the user to read and write extended attributes. If this attempt
fails, the object will appear to be owned by the process accessing
it until the extended attribute is readable again.
File system events
Most inotify
events are supported in bind mounts, and likely dnotify
and
fanotify
(though they have not been tested) are also supported. This means
that file system events from macOS are sent into containers and trigger any
listening processes there.
The following are supported file system events:
- Creation
- Modification
- Attribute changes
- Deletion
- Directory changes
The following are partially supported file system events:
- Move events trigger
IN_DELETE
on the source of the rename andIN_MODIFY
on the destination of the rename
The following are unsupported file system events:
- Open
- Access
- Close events
- Unmount events (see Mounts)
Some events may be delivered multiple times. These limitations do not apply to events between containers, only to those events originating in macOS.
Mounts
The macOS mount structure is not visible in the shared volume, but volume contents are visible. Volume contents appear in the same file system as the rest of the shared file system. Mounting/unmounting macOS volumes that are also bind mounted into containers may result in unexpected behavior in those containers. Unmount events are not supported. Mount export support is planned but is still under development.
Symlinks
Symlinks are shared unmodified. This may cause issues when symlinks contain paths that rely on the default case-insensitivity of the default macOS file system, HFS+.
File types
Symlinks, hardlinks, socket files, named pipes, regular files, and directories are supported. Socket files and named pipes only transmit between containers and between macOS processes – no transmission across the hypervisor is supported, yet. Character and block device files are not supported.
Extended attributes
Extended attributes are not yet supported.
Technology
osxfs
does not use OSXFUSE. osxfs
does not run under, inside, or
between macOS userspace processes and the macOS kernel.
Performance issues, solutions, and roadmap
Please see Performance tuning for volume mounts (shared filesystems) to learn about new configuration options available with the Docker 17.04 CE Edge release.
With regard to reported performance issues (GitHub issue 77: File access in mounted volumes extremely slow), and a similar thread on Docker for Mac forums on topic: File access in mounted volumes extremely slow, this topic provides an explanation of the issues, recent progress in addressing them, how the community can help us, and what you can expect in the future. This explanation derives from a post about understanding performance by David Sheets (@dsheets) on the Docker development team to the forum topic just mentioned. We want to surface it in the documentation for wider reach.
Understanding performance
Perhaps the most important thing to understand is that shared file system
performance is multi-dimensional. This means that, depending on your workload,
you may experience exceptional, adequate, or poor performance with osxfs
, the
file system server in Docker for Mac. File system APIs are very wide (20-40
message types) with many intricate semantics involving on-disk state, in-memory
cache state, and concurrent access by multiple processes. Additionally, osxfs
integrates a mapping between macOS’s FSEvents API and Linux’s inotify
API
which is implemented inside of the file system itself, complicating matters
further (cache behavior in particular).
At the highest level, there are two dimensions to file system performance:
throughput (read/write IO) and latency (roundtrip time). In a traditional file
system on a modern SSD, applications can generally expect throughput of a few
GB/s. With large sequential IO operations, osxfs
can achieve throughput of
around 250 MB/s which, while not native speed, will not be the bottleneck for
most applications which perform acceptably on HDDs.
Latency is the time it takes for a file system call to complete. For instance,
the time between a thread issuing write in a container and resuming with the
number of bytes written. With a classical block-based file system, this latency
is typically under 10μs (microseconds). With osxfs
, latency is presently
around 130μs for most operations or 13× slower. For workloads which demand many
sequential roundtrips, this results in significant observable slowdown.
Reducing the latency requires shortening the data path from a Linux system call to
macOS and back again. This requires tuning each component in the data path in
turn – some of which require significant engineering effort. Even if we achieve
a huge latency reduction of 65μs/roundtrip, we will still “only” see a doubling
of performance. This is typical of performance engineering, which requires
significant effort to analyze slowdowns and develop optimized components. We
know a number of approaches that will probably reduce the roundtrip time but we
haven’t implemented all those improvements yet (more on this below in
What you can do).
A second approach to improving performance is to reduce the number of roundtrips by caching data. Recent versions of Docker for Mac (17.04 onwards) include caching support that brings significant (2-4×) improvements to many applications. Much of the overhead of osxfs arises from the requirement to keep the container’s and the host’s view of the file system consistent, but full consistency is not necessary for all applications and relaxing the constraint opens up a number of opportunities for improved performance.
At present there is support for read caching, with which the container’s view of the file system can temporarily drift apart from the authoritative view on the host. Further caching developments, including support for write caching, are planned. A detailed description of the behavior in various caching configurations is available.
What we are doing
We continue to actively work on increasing caching and on reducing the file system data path latency. This requires significant analysis of file system traces and speculative development of system improvements to try to address specific performance issues. Perhaps surprisingly, application workload can have a huge effect on performance. As an example, here are two different use cases contributed on the forum topic and how their performance differs and suffers due to latency, caching, and coherence:
-
A rake example (see below) appears to attempt to access 37000+ different files that don’t exist on the shared volume. Even with a 2× speedup via latency reduction this use case will still seem “slow”. With caching enabled the performance increases around 3.5×, as described in the user-guided caching post. We expect to see further performance improvements for rake with a “negative dcache” that keeps track of, in the Linux kernel itself, the files that do not exist. However, even this is not sufficient for the first time rake is run on a shared directory. To handle that case, we actually need to develop a Linux kernel patch which negatively caches all directory entries not in a specified set – and this cache must be kept up-to-date in real-time with the macOS file system state even in the presence of missing macOS FSEvents messages and so must be invalidated if macOS ever reports an event delivery failure.
-
Running
ember build
in a shared file system results in ember creating many different temporary directories and performing lots of intermediate activity within them. An empty ember project is over 300MB. This usage pattern does not require coherence between Linux and macOS, and will be significantly improved by write caching.
These two examples come from performance use cases contributed by users and they are incredibly helpful in prioritizing aspects of file system performance to improve. We are developing statistical file system trace analysis tools to characterize slow-performing workloads more easily in order to decide what to work on next.
Under development, we have:
-
A growing performance test suite of real world use cases (more on this below in What you can do)
-
Further caching improvements, including negative, structural, and write-back caching, and lazy cache invalidation.
-
A Linux kernel patch to reduce data path latency by 2/7 copies and 2/5 context switches
-
Increased macOS integration to reduce the latency between the hypervisor and the file system server
What you can do
When you report shared file system performance issues, it is most helpful to include a minimal Real World reproduction test case that demonstrates poor performance.
Without a reproduction, it is very difficult for us to analyze your use case and determine what improvements would speed it up. When you don’t provide a reproduction, one of us has to take the time to figure out the specific software you are using and guess and hope that we have configured it in a typical way or a way that has poor performance. That usually takes 1-4 hours depending on your use case and once it is done, we must then determine what regular performance is like and what kind of slow-down your use case is experiencing. In some cases, it is not obvious what operation is even slow in your specific development workflow. The additional set-up to reproduce the problem means we have less time to fix bugs, develop analysis tools, or improve performance. So, please include simple, immediate performance issue reproduction test cases. The rake reproduction case by @hirowatari shown in the forums thread is a great example.
This example originally provided:
-
A version-controlled repository so any changes/improvements to the test case can be easily tracked.
-
A Dockerfile which constructs the exact image to run
-
A command-line invocation of how to start the container
-
A straight-forward way to measure the performance of the use case
-
A clear explanation (README) of how to run the test case
What you can expect
We will continue to work toward an optimized shared file system implementation on the Edge channel of Docker for Mac.
You can expect some of the performance improvement work mentioned above to reach the Edge channel in the coming release cycles.
In due course, we will open source all of our shared file system components. At
that time, we would be very happy to collaborate with you on improving the
implementation of osxfs
and related software.
We also plan to write up and publish further details of shared file system performance analysis and improvement on the Docker blog. Look for or nudge @dsheets about those articles, which should serve as a jumping off point for understanding the system, measuring it, or contributing to it.
Wrapping Up
We hope this gives you a rough idea of where osxfs
performance is and where
it’s going. We are treating good performance as a top priority feature of the
file system sharing component and we are actively working on improving it
through a number of different avenues. The osxfs project started in December
- Since the first integration into Docker for Mac in February 2016, we’ve improved performance by 50x or more for many workloads while achieving nearly complete POSIX compliance and without compromising coherence (it is shared and not simply synced). Of course, in the beginning there was lots of low-hanging fruit and now many of the remaining performance improvements require significant engineering work on custom low-level components.
We appreciate your understanding as we continue development of the product and work on all dimensions of performance. We want to continue to work with the community on this, so please continue to report issues as you find them. We look forward to collaborating with you on ideas and on the source code itself.
mac, osxfs